Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 869
Filter
1.
Rev. bras. ortop ; 58(3): 478-486, May-June 2023. tab, graf
Article in English | LILACS | ID: biblio-1449824

ABSTRACT

Abstract Objective To evaluate the influence of polymorphisms on genes encoding type I collagen and the genetic susceptibility of tendinopathy. Methodology Case-control study involving 242 Brazilian athletes from different sports modalities (55 cases of tendinopathy and 187 controls). The polymorphisms COLIAI (rs1107946) and COLIA2 (rs412777, rs42524, and rs2621215) were analyzed by theTaqMansystem. Odds ratio(OR)withtheir 95% confidence intervals (CIs) were calculated using a nonconditional logistic regression model. Results The mean age was 24.0 ± 5.6 years old and 65.3% were men. Of the 55 cases of tendinopathy, 25.4% had > 1 affected tendon, the most frequent being patellar (56.3%), rotator cuff (30.9%) and elbow or hand flexors (30.9%). Age and amount of time of sports practice were associated with a higher chance of presenting tendinopathy (5 and 8 times, respectively). The frequency of variant alleles in control and case patients, respectively, was: COLIAI rs1107946 24.0 and 29.6%; COLIA2 rs412777 36.1 and 27.8%; rs42524 17.5 and 25.9%; and rs2621215 21.3 and 27.8%. After adjusting for confounding factors (age and years of sports practice), COLIA2 rs42524and rs2621215 polymorphisms were associated with increased risk of tendinopathy (OR = 5.5; 95% CI = 1.2-24.6 and OR = 3.9; IC95% = 1.1-13.5, respectively). The haplotype COLIA2 CGT was associated with low risk for disease development (OR = 0.5; 95%CI = 0.3-0.9). Conclusion Age (≥ 25 years old), time of sports practice (≥ 6years) and polymorphisms in the COLIA2 gene increased the risk of developing tendinopathy.


Resumo Objetivo Avaliar a influência de polimorfismos nos genes que codificam o colágeno tipo I e a suscetibilidade genética da tendinopatia. Metodologia Estudo caso-controle envolvendo 242 atletas brasileiros de diferentes modalidades esportivas (55 casos de tendinopatia e 187 controles). Os polimorfismos COL1A1 (rs1107946) e COL1A2 (rs412777, rs42524 e rs2621215) foram analisados pelo sistema TaqMan. As razões de chance (OR) com seus intervalos de confiança (IC) de 95% foram calculadas usando um modelo de regressão logística não-condicional. Resultados A média de idade foi de 24,0 ± 5,6 anos e 65,3% eram homens. Dos 55 casos de tendinopatia, 25,4% apresentaram mais de um tendão acometido, sendo os maisfrequentesopatelar(56,3%),omanguitorotador(30,9%)eodocotoveloou flexores das mãos (30,9%). A idade e o tempo de prática esportiva foram associados a uma maior chance de apresentar tendinopatia (5 e 8 vezes, respectivamente). A frequência dos alelos variantes nos controles e casos, respectivamente, foi: COL1A1 rs1107946 24,0 e 29,6%; COL1A2 rs412777 36,1 e 27,8%; rs42524 17,5 e 25,9%; e rs2621215 21,3 e 27,8%. Após ajuste pelos fatores de confundimento (idade e anos de práticas esportiva), os polimorfismos COL1A2 rs42524 e rs2621215 foram associados a um risco aumentado de tendinopatia (OR = 5,5; IC95% = 1,2-24,6 e OR = 3,9; IC95% = 1,1-13,5, respectivamente). O haplótipo COL1A2 CGT foi associado a um baixo risco para desenvolvimento da doença (OR = 0,5; IC95% = 0,3-0,9). Conclusão Aidade (> 25 anos), o tempo de prática esportiva (> 6 anos) e polimorfismos no gene COL1A2 aumentaram o risco de desenvolvimento da tendino-patia.


Subject(s)
Humans , Male , Female , Polymorphism, Genetic , Collagen Type I , Tendinopathy , Athletes
2.
Journal of Southern Medical University ; (12): 994-1001, 2023.
Article in Chinese | WPRIM | ID: wpr-987013

ABSTRACT

OBJECTIVE@#To observe the effect of exosomes secreted by lipopolysaccharides (LPS)-stimulated macrophages on hepatic stellate cell activation and migration and explore the underlying molecular mechanism.@*METHODS@#Human monocyte THP-1 cells were induced to differentiate into macrophages using propylene glycol methyl ether acetic acid (PMA, 100 ng/mL, 24 h) followed by stimulation with LPS, and the culture supernatant of macrophages was collected for extraction of the exosomes by ultracentrifugation. The expression of miR-155-5p in the exosomes was detected using qRT-PCR. A Transwell co-culture system was used to observe the effects of the macrophage-derived exosomes on LX2 cell (a hepatic stellate cell line) proliferation, migration, oxidative stress and the expression of fibrosis biomarkers, which were also observed in LX2 cells transfected with miR-155-5p-mimics or miR-155-5p-inhibitors. Western blotting was used to detect the expressions of SOCS1 and its downstream signal pathway proteins.@*RESULTS@#Treatment with the exosomes from LPS-stimulated macrophages significantly enhanced the proliferation and migration ability of LX2 cells and increased the levels of oxidative stress and expressions of the fibrosis markers such as type Ⅰ collagen (P < 0.05). The expression of miR-155-5p in the exosomes secreted by macrophages was significantly increased after LPS treatment (P < 0.01). LX2 cells overexpressing miR-155-5p also exhibited significantly enhanced proliferation and migration with increased oxidative stress levels and expression of type Ⅰ collagen (P < 0.05), and interference of miR-155-5p expression produced the opposite effects. Western blotting showed that miR-155-5p overexpression obviously inhibited SOCS1 expression and promoted p-Smad2/3, Smad2/3 and RhoA protein expressions in LX2 cells (P < 0.05).@*CONCLUSION@#LPS stimulation of the macrophages increases miR-155-5p expression in the exosomes to promote activation and migration and increase oxidative stress and collagen production in hepatic stellate cells.


Subject(s)
Humans , Hepatic Stellate Cells , Lipopolysaccharides/pharmacology , Collagen Type I , Exosomes , Macrophages , MicroRNAs
3.
Chinese Journal of Internal Medicine ; (12): 841-849, 2023.
Article in Chinese | WPRIM | ID: wpr-985994

ABSTRACT

Objective: JWH133, a cannabinoid type 2 receptor agonist, was tested for its ability to protect mice from bleomycin-induced pulmonary fibrosis. Methods: By using a random number generator, 24 C57BL/6J male mice were randomly divided into the control group, model group, JWH133 intervention group, and JWH133+a cannabinoid type-2 receptor antagonist (AM630) inhibitor group, with 6 mice in each group. A mouse pulmonary fibrosis model was established by tracheal instillation of bleomycin (5 mg/kg). Starting from the first day after modeling, the control group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution, and the model group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution. The JWH133 intervention group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg, dissolved in physiological saline), and the JWH133+AM630 antagonistic group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg) and AM630 (2.5 mg/kg). After 28 days, all mice were killed; the lung tissue was obtained, pathological changes were observed, and alveolar inflammation scores and Ashcroft scores were calculated. The content of type Ⅰ collagen in the lung tissue of the four groups of mice was measured using immunohistochemistry. The levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in the serum of the four groups of mice were measured using enzyme-linked immunosorbent assay (ELISA), and the content of hydroxyproline (HYP) in the lung tissue of the four groups of mice was measured. Western blotting was used to measure the protein expression levels of type Ⅲ collagen, α-smooth muscle actin (α-SMA), extracellular signal regulated kinase (ERK1/2), phosphorylated P-ERK1/2 (P-ERK1/2), and phosphorylated ribosome S6 kinase type 1 (P-p90RSK) in the lung tissue of mice in the four groups. Real-time quantitative polymerase chain reaction was used to measure the expression levels of collagen Ⅰ, collagen Ⅲ, and α-SMA mRNA in the lung tissue of the four groups of mice. Results: Compared with the control group, the pathological changes in the lung tissue of the model group mice worsened, with an increase in alveolar inflammation score (3.833±0.408 vs. 0.833±0.408, P<0.05), an increase in Ashcroft score (7.333±0.516 vs. 2.000±0.633, P<0.05), an increase in type Ⅰ collagen absorbance value (0.065±0.008 vs. 0.018±0.006, P<0.05), an increase in inflammatory cell infiltration, and an increase in hydroxyproline levels [(1.551±0.051) μg/mg vs. (0.974±0.060) μg/mg, P<0.05]. Compared with the model group, the JWH133 intervention group showed reduced pathological changes in lung tissue, decreased alveolar inflammation score (1.833±0.408, P<0.05), decreased Ashcroft score (4.167±0.753, P<0.05), decreased type Ⅰ collagen absorbance value (0.032±0.004, P<0.05), reduced inflammatory cell infiltration, and decreased hydroxyproline levels [(1.148±0.055) μg/mg, P<0.05]. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group showed more severe pathological changes in the lung tissue of mice, increased alveolar inflammation score and Ashcroft score, increased type Ⅰ collagen absorbance value, increased inflammatory cell infiltration, and increased hydroxyproline levels. Compared with the control group, the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK proteins in the lung tissue of the model group mice increased, while the expression of type Ⅰ collagen, type Ⅲ collagen, and α-SMA mRNA increased. Compared with the model group, the protein expression of α-SMA (relative expression 0.60±0.17 vs. 1.34±0.19, P<0.05), type Ⅲ collagen (relative expression 0.52±0.09 vs. 1.35±0.14, P<0.05), P-ERK1/2 (relative expression 0.32±0.11 vs. 1.14±0.14, P<0.05), and P-p90RSK (relative expression 0.43±0.14 vs. 1.15±0.07, P<0.05) decreased in the JWH133 intervention group. The type Ⅰ collagen mRNA (2.190±0.362 vs. 5.078±0.792, P<0.05), type Ⅲ collagen mRNA (1.750±0.290 vs. 4.935±0.456, P<0.05), and α-SMA mRNA (1.588±0.060 vs. 5.192±0.506, P<0.05) decreased. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group increased the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK protein in the lung tissue of mice, and increased the expression of type Ⅲ collagen and α-SMA mRNA. Conclusion: In mice with bleomycin-induced pulmonary fibrosis, the cannabinoid type-2 receptor agonist JWH133 inhibited inflammation and improved extracellular matrix deposition, which alleviated lung fibrosis. The underlying mechanism of action may be related to the activation of the ERK1/2-RSK1 signaling pathway.


Subject(s)
Mice , Male , Animals , Pulmonary Fibrosis/pathology , Cannabinoid Receptor Agonists/metabolism , Collagen Type I/pharmacology , Collagen Type III/pharmacology , Hydroxyproline/pharmacology , Sodium Chloride/metabolism , Mice, Inbred C57BL , Lung/pathology , Cannabinoids/adverse effects , Bleomycin/metabolism , Collagen/metabolism , Inflammation/pathology , RNA, Messenger/metabolism
4.
Journal of Central South University(Medical Sciences) ; (12): 837-845, 2023.
Article in English | WPRIM | ID: wpr-982354

ABSTRACT

OBJECTIVES@#Long-term elevated blood pressure may lead to kidney damage, yet the pathogenesis of hypertensive kidney damage is still unclear. This study aims to explore the role and significance of leucine-rich alpha-2-glycoprotein-1 (LRG-1) in hypertensive renal damage through detecting the levels of LRG-1 in the serum and kidney of mice with hypertensive renal damage and its relationship with related indexes.@*METHODS@#C57BL/6 mice were used in this study and randomly divided into a control group, an angiotensin II (Ang II) group, and an Ang II+irbesartan group. The control group was gavaged with physiological saline. The Ang II group was pumped subcutaneously at a rate of 1.5 mg/(kg·d) for 28 days to establish the hypertensive renal damage model in mice, and then gavaged with equivalent physiological saline. The Ang II+irbesartan group used the same method to establish the hypertensive renal damage model, and then was gavaged with irbesartan. Immunohistochemistry and Western blotting were used to detect the expression of LRG-1 and fibrosis-related indicators (collagen I and fibronectin) in renal tissues. ELISA was used to evaluate the level of serum LRG-1 and inflammatory cytokines in mice. The urinary protein-creatinine ratio and renal function were determined, and correlation analysis was conducted.@*RESULTS@#Compared with the control group, the levels of serum LRG-1, the expression of LRG-1 protein, collagen I, and fibronectin in kidney in the Ang II group were increased (all P<0.01). After treating with irbesartan, renal damage of hypertensive mice was alleviated, while the levels of LRG-1 in serum and kidney were decreased, and the expression of collagen I and fibronectin was down-regulated (all P<0.01). Correlation analysis showed that the level of serum LRG-1 was positively correlated with urinary protein-creatinine ratio, blood urea nitrogen, and blood creatinine level in hypertensive kidney damage mice. Serum level of LRG-1 was also positively correlated with serum inflammatory factors including TNF-α, IL-1β, and IL-6.@*CONCLUSIONS@#Hypertensive renal damage mice display elevated expression of LRG-1 in serum and kidney, and irbesartan can reduce the expression of LRG-1 while alleviating renal damage. The level of serum LRG-1 is positively correlated with the degree of hypertensive renal damage, suggesting that it may participate in the occurrence and development of hypertensive renal damage.


Subject(s)
Animals , Mice , Mice, Inbred C57BL , Fibronectins , Irbesartan , Creatinine , Kidney/physiology , Hypertension/complications , Angiotensin II , Collagen Type I
5.
Chinese journal of integrative medicine ; (12): 600-607, 2023.
Article in English | WPRIM | ID: wpr-982297

ABSTRACT

OBJECTIVE@#To investigate the protective mechanisms of Chinese medicine Shexiang Tongxin Dropping Pills (STDP) on heart failure (HF).@*METHODS@#Isoproterenol (ISO)-induced HF rat model and angiotensin II (Ang II)-induced neonatal rat cardiac fibroblast (CFs) model were used in the present study. HF rats were treated with and without STDP (3 g/kg). RNA-seq was performed to identify differentially expressed genes (DEGs). Cardiac function was evaluated by echocardiography. Hematoxylin and eosin and Masson's stainings were taken to assess cardiac fibrosis. The levels of collagen I (Col I) and collagen III (Col III) were detected by immunohistochemical staining. CCK8 kit and transwell assay were implemented to test the CFs' proliferative and migratory activity, respectively. The protein expressions of α-smooth muscle actin (α-SMA), matrix metalloproteinase-2 (MMP-2), MMP-9, Col I, and Col III were detected by Western blotting.@*RESULTS@#The results of RNA-seq analysis showed that STDP exerted its pharmacological effects on HF via multiple signaling pathways, such as the extracellular matrix (ECM)-receptor interaction, cell cycle, and B cell receptor interaction. Results from in vivo experiments demonstrated that STDP treatment reversed declines in cardiac function, inhibiting myocardial fibrosis, and reversing increases in Col I and Col III expression levels in the hearts of HF rats. Moreover, STDP (6, 9 mg/mL) inhibited the proliferation and migration of CFs exposed to Ang II in vitro (P<0.05). The activation of collagen synthesis and myofibroblast generation were markedly suppressed by STDP, also the synthesis of MMP-2 and MMP-9, as well as ECM components Col I, Col III, and α-SMA were decreased in Ang II-induced neonatal rats' CFs.@*CONCLUSIONS@#STDP had anti-fibrotic effects in HF, which might be caused by the modulation of ECM-receptor interaction pathways. Through the management of cardiac fibrosis, STDP may be a compelling candidate for improving prognosis of HF.


Subject(s)
Rats , Animals , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , RNA-Seq , Transcriptome/genetics , Heart Failure/drug therapy , Collagen , Collagen Type I/metabolism , Fibrosis , Myocardium/pathology
6.
Chinese journal of integrative medicine ; (12): 316-324, 2023.
Article in English | WPRIM | ID: wpr-982269

ABSTRACT

OBJECTIVE@#To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model, and the underlying mechanisms were partly dissected in vivo and in vitro.@*METHODS@#Thirty-two male mice were randomly divided into 4 groups, including control, model, low- and high-dose amygdalin-treated groups, 8 mice in each group. Except the control group, mice in the other groups were injected intraperitoneally with 10% carbon tetrachloride (CCl4)-olive oil solution 3 times a week for 6 weeks to induce liver fibrosis. At the first 3 weeks, amygdalin (1.35 and 2.7 mg/kg body weight) were administered by gavage once a day. Mice in the control group received equal quantities of subcutaneous olive oil and intragastric water from the fourth week. At the end of 6 weeks, liver tissue samples were harvested to detect the content of hydroxyproline (Hyp). Hematoxylin and eosin and Sirius red staining were used to observe the inflammation and fibrosis of liver tissue. The expressions of collagen I (Col-I), alpha-smooth muscle actin (α-SMA), CD31 and transforming growth factor β (TGF-β)/Smad signaling pathway were observed by immunohistochemistry, quantitative real-time polymerase chain reaction and Western blot, respectively. The activation models of hepatic stellate cells, JS-1 and LX-2 cells induced by TGF-β1 were used in vitro with or without different concentrations of amygdalin (0.1, 1, 10 µmol/L). LSECs. The effect of different concentrations of amygdalin on the expressions of liver sinusoidal endothelial cells (LSECs) dedifferentiation markers CD31 and CD44 were observed.@*RESULTS@#High-dose of amygdalin significantly reduced the Hyp content and percentage of collagen positive area, and decreased the mRNA and protein expressions of Col-I, α-SMA, CD31 and p-Smad2/3 in liver tissues of mice compared to the model group (P<0.01). Amygdalin down-regulated the expressions of Col-I and α-SMA in JS-1 and LX-2 cells, and TGFβ R1, TGFβ R2 and p-Smad2/3 in LX-2 cells compared to the model group (P<0.05 or P<0.01). Moreover, 1 and 10 µmol/L amygdalin inhibited the mRNA and protein expressions of CD31 in LSECs and increased CD44 expression compared to the model group (P<0.05 or P<0.01).@*CONCLUSIONS@#Amygdalin can dramatically alleviate liver fibrosis induced by CCl4 in mice and inhibit TGF-β/Smad signaling pathway, consequently suppressing HSCs activation and LSECs dedifferentiation to improve angiogenesis.


Subject(s)
Rats , Male , Mice , Animals , Transforming Growth Factor beta/metabolism , Amygdalin/therapeutic use , Endothelial Cells/metabolism , Olive Oil/therapeutic use , Rats, Wistar , Smad Proteins/metabolism , Liver Cirrhosis/metabolism , Liver , Transforming Growth Factor beta1/metabolism , Signal Transduction , Collagen Type I/metabolism , Carbon Tetrachloride , Hepatic Stellate Cells
7.
Chinese Journal of Medical Genetics ; (6): 821-827, 2023.
Article in Chinese | WPRIM | ID: wpr-981829

ABSTRACT

OBJECTIVE@#To explore the genetic basis of two fetuses with an osteogenesis imperfecta (OI) phenotype.@*METHODS@#Two fetuses diagnosed at the Affiliated Hospital of Weifang Medical College respectively on June 11, 2021 and October 16, 2021 were selected as the study subjects. Clinical data of the fetuses were collected. Amniotic fluid samples of the fetuses and peripheral blood samples of their pedigree members were collected for the extraction of genomic DNA. Whole exome sequencing (WES) and Sanger sequencing were carried out to identify the candidate variants. Minigene splicing reporter analysis was used to validate the variant which may affect the pre-mRNA splicing.@*RESULTS@#For fetus 1, ultrasonography at 17+6 weeks of gestation had revealed shortening of bilateral humerus and femurs by more than two weeks, in addition with multiple fractures and angular deformities of long bones. WES revealed that fetus 1 had harbored a heterozygous c.3949_3950insGGCATGT (p.N1317Rfs*114) variant in exon 49 of the COL1A1 gene (NM_000088.4). Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), it was classified as a pathogenic variant (PVS1+PS2+PM2_Supporting) for disrupting the downstream open reading frame resulting in premature translational termination, being de novo in origin, and lacking records in the population and disease databases.For fetus 2, ultrasonography at 23 weeks of gestation also revealed shortening of bilateral humerus and femurs by one and four weeks, respectively, in addition with bending of bilateral femurs, tibias and fibulas. Fetus 2 had harbored a heterozygous c.1557+3A>G variant in intron 26 of the COL1A2 gene (NM_000089.4). Minigene experiment showed that it has induced skipping of exon 26 from the COL1A2 mRNA transcript, resulting in an in-frame deletion (c.1504_1557del) of the COL1A2 mRNA transcript. The variant was inherited from its father and had been previously reported in a family with OI type 4. It was therefore classified as a pathogenic variant (PS3+PM1+PM2_Supporting+PP3+PP5).@*CONCLUSION@#The c.3949_3950insGGCATGT (p.N1317Rfs*114) variant in the COL1A1 gene and c.1557+3A>G variant in the COL1A2 gene probably underlay the disease in the two fetuses. Above findings not only have enriched the mutational spectrum of OI, but also shed light on the correlation between its genotype and phenotype and provided a basis for genetic counseling and prenatal diagnosis for the affected pedigrees.


Subject(s)
Pregnancy , Female , Humans , Osteogenesis Imperfecta/genetics , Collagen Type I, alpha 1 Chain , Collagen Type I/genetics , Mutation , Fetus
8.
Chinese journal of integrative medicine ; (12): 162-169, 2023.
Article in English | WPRIM | ID: wpr-971327

ABSTRACT

OBJECTIVE@#To investigate the effect of electroacupuncture (EA) at Neiguan (PC 6) on myocardial fibrosis in spontaneously hypertensive rats (SHRs), and to explore the contribution of interleukin-1 β (IL-1 β), insulin-like growth factor 1 (IGF-1), and transforming growth factor β 1 (TGF- β 1) to the effects.@*METHODS@#Nine 12-weeks-old Wistar Kyoto (WKY) male rats were employed as the normal group. Twenty-seven SHRs were equally randomized into SHR, SHR+EA, and SHR + sham groups. EA was applied at bilateral PC 6 once a day 30 min per day in 8 consecutive weeks. After 8-weeks EA treatment at PC 6, histopathologic changes of collagen type I (Col I), collagen type 1 (Col 1) and the levels of IGF-1, 1L-1 β, TGF- β 1, matrix metalloproteinase (MMP)-2 and MMP-9 were examined in myocardial tissure respectively.@*RESULTS@#After 8-weeks EA treatment at PC 6, the enhanced myocardial fibrosis in SHRs were characterized by the increased mean fluorescence intensity of Col I and Col 1 in myocardium tissue (P<0.01). All these abnormal alterations above in SHR + EA group was significantly lower compared with the SHR group (P<0.01). Meanwhile, the increased levels of IL-1 β, IGF-1, TGF-β 1 in serum or myocardial tissue of SHRs, diminished MMP 9 mRNA expression in SHRs were also markedly inhibited after 8 weeks of EA treatment (P<0.05 or P<0.01). Furthermore, the contents of IL-1 β, IGF-1, TGF-β 1 in myocardial tissue were positively correlated with the systolic blood pressure and hydroxyproline respectively (P<0.01).@*CONCLUSION@#EA at bilateral PC 6 could ameliorate cardiac fibrosis in SHRs, which might be mediated by regulation of 1L-1 β/IGF-1-TGF- β 1-MMP9 pathway.


Subject(s)
Rats , Animals , Male , Rats, Inbred WKY , Electroacupuncture , Hypertension/therapy , Insulin-Like Growth Factor I , Interleukin-1beta , Rats, Inbred SHR , Essential Hypertension , Myocardium/pathology , Collagen Type I , Fibrosis
9.
Chinese Journal of Hepatology ; (12): 77-83, 2023.
Article in Chinese | WPRIM | ID: wpr-970955

ABSTRACT

Objective: To explore the pathogenic mechanism of the miR-340/high mobility group box 1 (HMGB1) axis in the formation of liver fibrosis. Methods: A rat liver fibrosis model was established by injecting CCl(4) intraperitoneally. miRNAs targeting and validating HMGB1 were selected with gene microarrays after screening the differentially expressed miRNAs in rats with normal and hepatic fibrosis. The effect of miRNA expressional changes on HMGB1 levels was detected by qPCR. Dual luciferase gene reporter assays (LUC) was used to verify the targeting relationship between miR-340 and HMGB1. The proliferative activity of the hepatic stellate cell line HSC-T6 was detected by thiazolyl blue tetrazolium bromide (MTT) assay after co-transfection of miRNA mimics and HMGB1 overexpression vector, and the expression of extracellular matrix (ECM) proteins type I collagen and α-smooth muscle actin (SMA) was detected by western blot. Statistical analysis was performed by analysis of variance and the LSD-t test. Results: Hematoxylin-eosin and Masson staining results showed that the rat model of liver fibrosis was successfully established. Gene microarray analysis and bioinformatics prediction had detected eight miRNAs possibly targeting HMGB1, and animal model validation had detected miR-340. qPCR detection results showed that miR-340 had inhibited the expression of HMGB1, and a luciferase complementation assay suggested that miR-340 had targeted HMGB1. Functional experiments results showed that HMGB1 overexpression had enhanced cell proliferation activity and the expression of type I collagen and α-SMA, while miR-340 mimics had not only inhibited cell proliferation activity and the expression of HMGB1, type I collagen, and α-SMA, but also partially reversed the promoting effect of HMGB1 on cell proliferation and ECM synthesis. Conclusion: miR-340 targets HMGB1 to inhibit the proliferation and ECM deposition in hepatic stellate cells and plays a protective role during the process of liver fibrosis.


Subject(s)
Animals , Rats , Cell Proliferation , Collagen Type I/metabolism , Fibrosis , Hepatic Stellate Cells , HMGB1 Protein/genetics , Liver Cirrhosis/pathology , MicroRNAs/metabolism
10.
Acta Physiologica Sinica ; (6): 179-187, 2023.
Article in Chinese | WPRIM | ID: wpr-980995

ABSTRACT

The present study was aimed to investigate the role and mechanism of glutaminolysis of cardiac fibroblasts (CFs) in hypertension-induced myocardial fibrosis. C57BL/6J mice were administered with a chronic infusion of angiotensin II (Ang II, 1.6 mg/kg per d) with a micro-osmotic pump to induce myocardial fibrosis. Masson staining was used to evaluate myocardial fibrosis. The mice were intraperitoneally injected with BPTES (12.5 mg/kg), a glutaminase 1 (GLS1)-specific inhibitor, to inhibit glutaminolysis simultaneously. Immunohistochemistry and Western blot were used to detect protein expression levels of GLS1, Collagen I and Collagen III in cardiac tissue. Neonatal Sprague-Dawley (SD) rat CFs were treated with 4 mmol/L glutamine (Gln) or BPTES (5 μmol/L) with or without Ang II (0.4 μmol/L) stimulation. The CFs were also treated with 2 mmol/L α-ketoglutarate (α-KG) under the stimulation of Ang II and BPTES. Wound healing test and CCK-8 were used to detect CFs migration and proliferation respectively. RT-qPCR and Western blot were used to detect mRNA and protein expression levels of GLS1, Collagen I and Collagen III. The results showed that blood pressure, heart weight and myocardial fibrosis were increased in Ang II-treated mice, and GLS1 expression in cardiac tissue was also significantly up-regulated. Gln significantly promoted the proliferation, migration, mRNA and protein expression of GLS1, Collagen I and Collagen III in the CFs with or without Ang II stimulation, whereas BPTES significantly decreased the above indices in the CFs. α-KG supplementation reversed the inhibitory effect of BPTES on the CFs under Ang II stimulation. Furthermore, in vivo intraperitoneal injection of BPTES alleviated cardiac fibrosis of Ang II-treated mice. In conclusion, glutaminolysis plays an important role in the process of cardiac fibrosis induced by Ang II. Targeted inhibition of glutaminolysis may be a new strategy for the treatment of myocardial fibrosis.


Subject(s)
Rats , Mice , Animals , Rats, Sprague-Dawley , Angiotensin II/pharmacology , Fibroblasts , Mice, Inbred C57BL , Fibrosis , Collagen/pharmacology , Collagen Type I/metabolism , RNA, Messenger/metabolism , Myocardium/pathology
11.
Chinese Medical Journal ; (24): 1089-1097, 2023.
Article in English | WPRIM | ID: wpr-980886

ABSTRACT

BACKGROUND@#Hair follicles are easily accessible and contain stem cells with different developmental origins, including mesenchymal stem cells (MSCs), that consequently reveal the potential of human hair follicle (hHF)-derived MSCs in repair and regeneration. However, the role of hHF-MSCs in Achilles tendinopathy (AT) remains unclear. The present study investigated the effects of hHF-MSCs on Achilles tendon repair in rabbits.@*METHODS@#First, we extracted and characterized hHF-MSCs. Then, a rabbit tendinopathy model was constructed to analyze the ability of hHF-MSCs to promote repair in vivo . Anatomical observation and pathological and biomechanical analyses were performed to determine the effect of hHF-MSCs on AT, and quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical staining were performed to explore the molecular mechanisms through which hHF-MSCs affects AT. Furthermore, statistical analyses were performed using independent sample t test, one-way analysis of variance (ANOVA), and one-way repeated measures multivariate ANOVA as appropriate.@*RESULTS@#Flow cytometry, a trilineage-induced differentiation test, confirmed that hHF-derived stem cells were derived from MSCs. The effect of hHF-MSCs on AT revealed that the Achilles tendon was anatomically healthy, as well as the maximum load carried by the Achilles tendon and hydroxyproline proteomic levels were increased. Moreover, collagen I and III were upregulated in rabbit AT treated with hHF-MSCs (compared with AT group; P  < 0.05). Analysis of the molecular mechanisms revealed that hHF-MSCs promoted collagen fiber regeneration, possibly through Tenascin-C (TNC) upregulation and matrix metalloproteinase (MMP)-9 downregulation.@*CONCLUSIONS@#hHF-MSCs can be a treatment modality to promote AT repair in rabbits by upregulating collagen I and III. Further analysis revealed that treatment of AT using hHF-MSCs promoted the regeneration of collagen fiber, possibly because of upregulation of TNC and downregulation of MMP-9, thus suggesting that hHF-MSCs are more promising for AT.


Subject(s)
Animals , Humans , Rabbits , Hair Follicle , Achilles Tendon/pathology , Tendinopathy/pathology , Proteomics , Collagen Type I , Mesenchymal Stem Cells
12.
Journal of Southern Medical University ; (12): 60-67, 2023.
Article in Chinese | WPRIM | ID: wpr-971495

ABSTRACT

OBJECTIVE@#To investigate the mechanism by which arecoline regulates the level of miR-155-5p in macrophage-secreted exosomes to induce the transformation of human oral mucosal fibroblasts (HOMFs) into fibroblast phenotype.@*METHODS@#Exosomes were harvested from human monocytic cell line THP-1 with or without arecoline treatment. The effects of arecoline-treated THP-1 cell culture supernatant (CS), THP-1-derived exosomes (EXO), exosome-depleted THP-1 cell supernatant (NES), miR-155-5p overexpression, and miR-155-5p inhibitor on migration ability of arecoline-treated HOMF cells were examined using Transwell migration assay. The polarization of THP-1 cells was detected using flow cytometry. DCFH-DA was used to detect the level of oxidative stress in the cells with different treatments. The mRNA and protein expressions of α- SMA, type I collagen and SOCS1 in the cells were detected with qRT-PCR and Western blotting.@*RESULTS@#Flow cytometry showed that arecoline-treated THP-1 cells exhibited obvious polarization from M0 to M1. Both the supernatant and exosomes from arecoline-treated THP-1 cells significantly enhanced the migration ability of HOMF cells, increased intracellular oxidative stress, up-regulated the expressions of miR-155- 5p and the mRNA and protein levels of α-SMA and type I collagen, and lowered the mRNA and protein expressions of SOCS1. In HOMF cells treated with exosomes from arecoline- treated THP-1 cells, overexpression of miR-155-5p significantly enhanced cell migration ability and increased cellular expressions of α-SMA and type I collagen, and miR-155-5p inhibitor caused the opposite changes.@*CONCLUSION@#Arecoline can up-regulate miR-155-5p expression in THP-1 cells and inhibit the expression of SOCS1 protein in HOMF cells via the exosome pathway, thus promoting the fibrotic phenotype transformation of HOMF cells.


Subject(s)
Humans , Exosomes , Arecoline/pharmacology , Collagen Type I , Fibroblasts , Macrophages , MicroRNAs
13.
Rev. bras. ortop ; 57(6): 1022-1029, Nov.-Dec. 2022. tab, graf
Article in English | LILACS | ID: biblio-1423636

ABSTRACT

Abstract Objective To evaluate in vitro the viability of mesenchymal stem cells derived from adipose tissue (AD-MSCs) in different commercial solutions of hyaluronic acid (HA) before and after being sowed in collagen I/III membrane. Methods In the first stage, the interaction between AD-MSCs was analyzed with seven different commercial products of HA, phosphate buffered saline (PBS), and bovine fetal serum (BFS), performed by counting living and dead cells after 24, 48 and 72 hours. Five products with a higher number of living cells were selected and the interaction between HA with AD-MSCs and type I/III collagen membrane was evaluated by counting living and dead cells in the same time interval (24, 48 and 72 hours). Results In both situations analyzed (HA + AD-MSCs and HA + AD-MSCs + membrane), BFS presented the highest percentage of living cells after 24, 48 and 72 hours, a result higher than that of HA. Conclusion The association of HA with AD-MSCs, with or without membrane, showed no superiority in cell viability when compared with BFS.


Resumo Objetivo Avaliar in vitro a viabilidade das células-tronco mesenquimais derivadas do tecido adiposo (AD-CTMs) em diferentes soluções comerciais de ácido hialurônico (AH) antes e após serem semeadas em membrana de colágeno I/III. Métodos Na primeira etapa, analisou-se a interação entre AD-CTMs com sete diferentes produtos comerciais de AH, salina tamponada com fosfato (PBS, na sigla em inglês) e soro fetal bovino (SFB), realizada pela contagem das células vivas e mortas após 24, 48 e 72 horas. Foram selecionados cinco produtos com maior número de células vivas e avaliou-se a interação entre o AH com AD-CTMs e a membrana de colágeno tipo I/III pela contagem de células vivas e mortas no mesmo intervalo de tempo (24, 48 e 72 horas). Resultados Em ambas as situações analisadas (AH + AD-CTM e AH + AD-CTM + membrana), o SFB apresentou a maior porcentagem de células vivas após 24, 48 e 72 horas, resultado superior ao do AH. Conclusão A associação do AH com as AD-CTMs, com ou sem a membrana, não demonstrou superioridade na viabilidade celular quando comparado com SFB.


Subject(s)
In Vitro Techniques , Cartilage, Articular , Collagen Type I , Mesenchymal Stem Cell Transplantation , Hyaluronic Acid
14.
Rev. cienc. salud (Bogotá) ; 20(3): 1-14, sep.-dic. 2022.
Article in Spanish | LILACS | ID: biblio-1427743

ABSTRACT

el tratamiento ortodóntico es responsable del agrandamiento gingival (ag), una condición clínica caracterizada por el crecimiento patológico, difuso o localizado del tejido gingival. La acumulación excesiva de la matriz extracelular (mec), incluyendo el colágeno tipo I, parece contribuir a las manifestaciones patológicas del ag. El objetivo del artículo es identificar y describir la distribución del colágeno tipo I en el tejido gingival de pacientes con ag por ortodoncia fija. Materiales y métodos: estudio de tipo descriptivo que analizó los tejidos gingivales de sujetos diagnosticados con ag portadores de ortodoncia (test, n = 5) e individuos periodontalmente sanos (control, n = 5). Las muestras se obtuvieron mediante gingivectomía. Todas las biopsias fueron fijadas, incluidas en parafina, cortadas y analizadas por medio de la coloración rojo picrosirius/verde rápido, con el propósito de distinguir las fibras de colágeno. Mediante una reacción inmunohistoquímica, el colágeno tipo I fue identificado con anticuerpo monoclonal. Resultados: en los pacientes con ag por tratamiento ortodóntico, se identificó un tejido epitelial hiperplásico con aumento evidente de las prolongaciones epiteliales y un tejido conectivo con abundantes haces de fibras de colágenos, principalmente en la lámina basal y la zona subyacente. Las fibras de colágeno tipo I en los tejidos de pacientes con ag por ortodoncia fueron gruesas de aspecto desorganizado, con una tinción inmunohistoquímica intensa, en comparación con las fibras del grupo control. Conclusiones: el aumento de fibras de colágenos, en especial de colágeno de tipo I, es un hallazgo histológico que caracteriza a los pacientes con ag por ortodoncia fija.


Orthodontic treatment is responsible for gingival overgrowth (go), a clinical condition charac-terized by pathological, diffuse, or localized growth of gingival tissue. Excessive accumulation of the extra-cellular matrix, including type I collagen, contributes to the pathological manifestations of go. The objective of this study is to identify and describe the distribution of type I collagen in the gingival tissue of patients with go because of fixed orthodontics. Materials and Methods: A descriptive study that analyzed the gingival tissues of subjects diagnosed with go with orthodontic (test, n = 5) and periodontally healthy individuals (control, n = 5). The samples were obtained by gingivectomy. All the biopsies were fixed, embedded in paraf-fin, and cut and analyzed using picrosirius red/fast green staining, in order to distinguish the collagen fiber. By means of an immunohistochemical reaction, type I collagen was identified with a monoclonal antibody. Results: A hyperplastic epithelial tissue was identified with an evident increase in epithelial processes and connective tissue with abundant bundles of collagen fiber, mainly in the basal lamina and the underlying area in patients with go because of orthodontic treatment. Type I collagen fiber in the tissues of patients with orthodontic go were thick and disorganized in appearance with intense immunohistochemical stain-ing, compared to the fibers of the control group. Conclusions:The increase in collagen fibers, particularly type I collagen, is a histological finding that characterizes patients with go because of fixed orthodontics.


• tratamento ortodôntico é responsável pelo aumento gengival (ag), uma condição clínica caracterizada pelo crescimento patológico difuso ou localizado do tecido gengival. O acúmulo excessivo de matriz extracelular (mec), incluindo colágeno tipo I, parece contribuir para as manifestações patoló-gicas do ag. O objetivo deste trabalho é identificar e descrever a distribuição do colágeno do tipo I no tecido gengival de pacientes com AG devido à ortodontia fixa. Materiais e métodos: estudo descritivo que analisou os tecidos gengivais de indivíduos diagnosticados com ag em uso de ortodontia (teste, n = 5) e indivíduos periodontalmente saudáveis (controle, n = 5). As amostras foram obtidas por gengivectomia. Todas as biópsias foram fixadas, embebidas em parafina, cortadas e analisadas com coloração picrosirius vermelho/verde rápido, a fim de distinguir as fibras colágenas. Usando uma reação imuno-histoquímica, o colágeno tipo I foi identificado com anticorpo monoclonal. Resultados: em pacientes com ag devido ao tratamento ortodôntico, foi identificado tecido epitelial hiperplásico com evidente aumento das exten-sões epiteliais e tecido conjuntivo com abundantes feixes de fibras colágenas, principalmente na lâmina basal e região subjacente. As fibras de colágeno tipo I em tecidos de pacientes com ag ortodôntico eram espessas com aspecto desorganizado e intensa coloração imuno-histoquímica, em comparação com as fibras do grupo controle. Conclusões: o aumento das fibras colágenas, principalmente do colágeno do tipo I, é um achado histológico que caracteriza os pacientes com ag devido à ortodontia fixa.


Subject(s)
Humans , Orthodontics , Patients , Biopsy , Gingival Overgrowth , Collagen Type I , Gingivectomy
15.
Rev. Assoc. Med. Bras. (1992) ; 68(2): 159-164, Feb. 2022. tab, graf
Article in English | LILACS | ID: biblio-1365364

ABSTRACT

SUMMARY OBJECTIVE: The objective of this study was to explore the molecular mechanism underlying the occurrence of benign bile duct stricture and the target of low-dose paclitaxel in the prevention of benign bile duct stricture. METHODS: Under the stimulation of transforming growth factor beta 1, the expression of collagen type I and connective tissue growth factor were detected on isolated primary fibroblasts. The phosphorylation levels of JNK and Smad2L were detected using Western blot. The effect of low-dose paclitaxel on the transforming growth factor beta 1-induced inhibition of type I collagen and connective tissue growth factor expression and JNK and Smad2L phosphorylation was also observed. RESULTS: Transforming growth factor beta 1 induced the secretion of type I collagen and connective tissue growth factor as well as JNK phosphorylation in biliary fibroblasts. The JNK inhibitor or siRNA-Smad2 inhibited the transforming growth factor beta 1-induced secretion of type I collagen and connective tissue growth factor. Low-dose paclitaxel inhibited the expression of type I collagen induced by transforming growth factor beta 1 and may inhibit the secretion of collagen in biliary fibroblasts. CONCLUSION: The activation of JNK/Smad2L induced by transforming growth factor beta 1 is involved in the occurrence of benign bile duct stricture that is mediated by the overexpression of type I collagen and connective tissue growth factor, and low-dose paclitaxel may inhibit the phosphorylation of JNK/Smad2L.


Subject(s)
Humans , Paclitaxel/pharmacology , Collagen , MAP Kinase Signaling System , Collagen Type I/metabolism , Collagen Type I/pharmacology , Smad2 Protein , Fibroblasts/metabolism
16.
Braz. dent. sci ; 25(3): 1-9, 2022. tab, ilus
Article in English | LILACS, BBO | ID: biblio-1373090

ABSTRACT

Objective: This in vitro study evaluated the effect of neolignan-containing solutions on dentin biomodification previously applied to the bonding procedure in adhesive restorations. Material and Methods: Neolignans, dehydrodieugenol B­CP1 and dehydrodieugenol B methyl ether­CP2, were isolated from Nectandra leucanthaand two aqueous solutions containing 0.13% neolignans, 0.2% propylene glycol and 3.0% ethanol were prepared. Bovine teeth were ground flat to obtain 2-mm thick specimens which received resin composite restorations (N=10). The neolignan solutions were applied before the bonding procedure (60 s). Experimental groups were: control, untreated group, 0.12% chlorhexidine gel, 0.13% CP1 solution, and 0.13% CP2 solution. A push-out bond strength test was conducted (0.5 mm/min). Bovine tooth sections (0.5×1.7×7.0 mm) were also obtained to assess the modulus of elasticity and mass change after treatment (N=15). A three-point bending test evaluated the elastic modulus of fully demineralized dentine beams after immersion in the solutions. The data were statistically analyzed (α = 0.05). Results: The bond strength of the restorations to dentin was significantly improved by the treatment with neolignan-containing solutions, irrespective of the evaluation time (p<0.05). After 6 months, a significant reduction in the bond strength was observed in the groups treated with the solutions (p>0.05), but the means were significantly higher than the control groups (p<0.05). The elastic modulus of demineralized dentin was significantly improved after the treatment with the solutions (p<0.05). All groups lost mass weight. Conclusion: The solutions improved the in vitro longevity of bonded restorations, possibly due to the dentin biomodification effect of the neolignans.(AU)


Objetivo: Este estudo in vitro avaliou o efeito de soluções contendo neolignanas na biomodificação da dentina aplicadas previamente à restaurações adesivas. Material e Métodos: Neolignanas, desidrodieugenol B­CP1 e éter metílico de desidrodieugenol B-CP2, foram isolados da espécie Nectandra leucantha e duas soluções aquosas contendo 0,13% de neolignanos, 0,2% de propilenoglicol e 3,0% de etanol foram preparadas. Dentes bovinos foram lixados para obter espécimes de 2 mm de espessura e preparos cavitários restaurados com resina composta (N=10). As soluções foram aplicadas em dentina antes do procedimento adesivo (60 s). Os grupos experimentais foram: controle, grupo não tratado, gel de clorexidina 0,12%, solução de CP1 a 0,13% e solução de CP2 a 0,13%. Foi realizado o teste de resistência de união push-out (0,5 mm/min). O módulo de elasticidade e a alteração de massa após tratamento da dentina (0,5×1,7×7,0 mm) foram também avaliados em teste de flexão de três pontos (N=15). Os dados foram analisados estatisticamente (α=0,05). Resultados: A resistência de união das restaurações à dentina melhorou significativamente com o tratamento com as soluções, independentemente do tempo de avaliação (p<0,05). Após 6 meses, foi observada redução significativa da resistência de união nos grupos tratados com as soluções (p>0,05), com médias significativamente maiores do que nos grupos controle (p<0,05). O módulo de elasticidade da dentina desmineralizada aumentou significativamente após tratamento com as soluções (p<0,05). Todos os grupos perderam massa, independentemente do tratamento. Conclusão: As soluções melhoraram in vitroa longevidade das restaurações adesivas, possivelmente devido ao efeito biomodificador da dentina das neolignanas(AU)


Subject(s)
Animals , Cattle , Plants, Medicinal , Lignans , Collagen Type I , Dental Restoration, Permanent , Dentin
17.
Braz. dent. sci ; 25(1): 1-10, 2022. tab, ilus
Article in English | LILACS, BBO | ID: biblio-1353703

ABSTRACT

Objective: To assess the effect of application of Biodentine (BD), Photobiomodulation (PBM) using 810 nm diode laser and both on the proliferation and odontogenic differentiation of human dental pulp stem cells (HDPSCs). Material and Methods: HDPSCs were collected, isolated, and characterized and then divided into six groups: groups 1, control; groups 2, biodentine (BD); group 3, irradiation at 1 J/cm 2 of 810-nm diode laser; group 4, irradiation at 1 J/cm 2 and culture with BD; group 5, irradiation at 2 J/cm 2, and group 6, irradiation at 2 J/cm 2 and culture with BD. Viability assay was measured through MTT assay and Alkaline phosphatase (ALP) enzyme activity and mRNA levels of RUNX2, collagen 1 (Col-1) and BMP2 were also assessed. Results: Photobiomodulation at 1 and 2 J/cm 2 combined with biodentine significantly promoted HDPSCs proliferation (in MTT assay results) and odontogenic differentiation (through the gene expression of RUNX2, Col-1 and BMP2 levels (p < 0.05). Conclusion: Photobiomodulation at 2 J/cm 2 combined with biodentine enhanced proliferation and odontogenic differentiation of cultured HDPSCs and thus could further be beneficial for dentin regeneration (AU)


Objetivo: Avaliar o efeito da aplicação de Biodentina (BD), Fotobiomodulação (PBM) usando diodo de laser de 810 nm e ambos na proliferação e diferenciação odontogênica de células tronco cultivadas da polpa dental (HDPSCs). Material e Métodos: HDPSCs foram coletadas, isoladas, caracterizadas e então divididas em seis grupos: grupo 1, controle; grupo 2, biodentina (BD); grupo 3, irradiação com diodo de laser a 1 J/cm2 de 810- nm; grupo 4, irradiação a 1 J/cm 2 e cultivo com BD; grupo 5, irradiação a 2 J/cm2, e grupo 6, irradiação a 2 J/cm2 e cultivo com BD. A viabilidade foi mensurada através do teste MTT e a atividade da enzima Fosfatase alcalina (ALP), e níveis de RNAm de RUNX2, de colágeno 1 (Col-1) e de BMP2 foram também mensurados. Resultados: Fotobiomodulação a 1 e 2 J/cm 2 combinada com biodentina promoveu significativa proliferação de HDPSCs (nos resultados do teste MTT) e diferenciação odontogênica (através da expressão genética dos níveis de RUNX2, Col-1 e BMP2 (p < 0.05)). Conclusão: Fotobiomodulação a 2 J/cm2 combinada com biodentina aumentou a proliferação e diferenciação odontogênica de HDPSCs cultivadas e dessa forma poderia ser benéfica para a regeneração dentinária. (AU)


Subject(s)
Stem Cells , Collagen Type I , Core Binding Factor Alpha 1 Subunit
18.
Journal of Southern Medical University ; (12): 618-624, 2022.
Article in Chinese | WPRIM | ID: wpr-936356

ABSTRACT

OBJECTIVE@#To develop a convenient method for rapid purification of fresh Pheretima proteins and assess the inhibitory effect of these proteins against pulmonary fibrosis.@*METHODS@#The crude extract of fresh Pheretima was obtained by freeze-drying method and then purified by size exclusion chromatography. The composition of the purified proteins was analyzed by mass spectrometry. MRC-5 cells were treated with 5 ng/mL TGF-β1 alone (model group) or in combination with SB431542 (2 μmol/L) or the purified proteins (13.125 μg/mL), and the cytotoxicity of purified proteins and their inhibitory effects on cell proliferation were detected with CCK8 assay. Flow cytometry was used to detect the changes in cell apoptosis, and the cellular expressions of α-SMA, Vimentin, E-cadherin, collagen I, Smad2/3 and P-Smad2/3 were detected using RT-PCR and Western blotting. In the animal experiment, adult male C57BL/6 mice were subjected to intratracheal instillation of bleomycin followed by treatment with the purified proteins (5 mg/mL) for 21 days, after which HE and Masson staining was used to observe the pathological changes in the lung tissue of the mice.@*RESULTS@#We successfully obtained purified proteins from fresh Pheretima protein by size exclusion chromatography. Treatment with the purified proteins significantly inhibited TGF-β1-induced proliferation of MRC-5 cells (P < 0.01), reduced the cellular expressions of α-SMA, Vimentin and collagen I (P < 0.001 or P < 0.01), increased the expression of E-cadherin (P < 0.01), and inhibited the expressions of Smad2/3 and P-Smad2/3 (P < 0.001 or P < 0.01). In male C57BL/6 mice models of bleomycin-induced pulmonary fibrosis, treatment with the purified proteins obviously reduced the number of inflammatory cells and fibrotic area in the lungs.@*CONCLUSION@#The purified proteins from fresh Pheretima obtained by size exclusion chromatography can inhibit pulmonary fibrosis in mice by regulating the TGF-β/ Smad pathway.


Subject(s)
Animals , Male , Mice , Biological Products/pharmacology , Bleomycin/adverse effects , Cadherins/metabolism , Collagen Type I , Lung/pathology , Mice, Inbred C57BL , Oligochaeta/chemistry , Pulmonary Fibrosis/drug therapy , Transforming Growth Factor beta1/metabolism , Vimentin/metabolism
19.
Chinese Journal of Applied Physiology ; (6): 32-36, 2022.
Article in Chinese | WPRIM | ID: wpr-927893

ABSTRACT

Objective: To investigate the effects of glycogen synthase kinase-3β (GSK3β)/eukaryotic extension factor kinase 2 (eEF2K) signaling pathway on the process of pulmonary fibrosis through in vivo experiments, and find new ideas for clinical treatment of pulmonary fibrosis. Methods: The pulmonary fibrosis model of C57BL/6 male mice was induced by bleomycin with intratracheal injection at the dose of 2 mg/kg. After 14 days of modeling, animals were divided into model group, negative inhibition group and inhibition group (n=5 for each group), and control group was not processed. The inhibition group was treated with TDZD-8 (4 mg/kg) after modeling, the negative inhibition group was given DMSO solution after modeling, and the samples were collected after 28 days. Hematoxylin-eosin staining method was used to detect lung fibrosis in mice and scored according to Ashcroft scale. Expression levels of GSK3β, p-GSK3β, eEF2K, p-eEF2K (Ser70, Ser392, Ser470), precursor protein of matrix metalloproteinase-2 (pro-MMP-2), matrix metalloproteinase-2 (MMP-2), collagen I (Col I), collagen Ⅲ (Col Ⅲ) and α-smooth muscle actin (α-SMA) were detected by Western blot. Results: Compared with control group, the fibrosis score was up-regulated, the expression levels of GSK3β, p-GSK3β, p-eEF2K (Ser70, Ser392, Ser470), pro-MMP-2, MMP-2, Col I, Col Ⅲ and α-SMA were increased, while that of eEF2K was decreased in model group (P<0.05). Compared with model group, the fibrosis score, expression levels of GSK3β, p-GSK3β, p-eEF2K (Ser70, Ser392, Ser470), pro-MMP-2, MMP-2, Col I, Col Ⅲ and α-SMA were decreased, but the expression level of eEF2K was increased in inhibition group (P<0.05). Conclusion: GSK3β can activate eEF2K by phosphorylation at the sites of Ser70, Ser392 and Ser470, increase the contents of fibrosis indicators, promote the formation of pulmonary fibrosis, and aggravate lung tissue lesions.


Subject(s)
Animals , Male , Mice , Collagen , Collagen Type I , Elongation Factor 2 Kinase/metabolism , Eukaryota/metabolism , Fibrosis , Glycogen Synthase Kinase 3 beta , Matrix Metalloproteinase 2/metabolism , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Signal Transduction
20.
Acta Academiae Medicinae Sinicae ; (6): 262-269, 2022.
Article in Chinese | WPRIM | ID: wpr-927874

ABSTRACT

Objective To explore the effect of overwork (OW) on extracellular matrix of arterial vessel wall in rats. Methods Random number grouping method was employed to assign 18 Sprague-Dawley rats into three groups(n=6):the control group(no special treatment),group OW(forced swimming twice a day for 15 days),and sleep deficiency(SD)+OW group(in addition to forced swimming twice a day,the rats were put on the platforms in water to limit sleep for 15 days).On the 16th day,the abdominal aorta and common carotid artery were collected after blood sampling from heart under deep anesthesia.A part of the abdominal aorta sample was taken for Masson staining of collagen fiber,and Verhoeff-Van Gieson staining was carried out for the elastic fiber of common carotid artery.Image J was employed for the quantitative analysis of collagen fiber and elastic fiber content.The expression of collagen 1(Col-1) protein was quantified by immunohistochemistry and the ultrastructure of vascular matrix was examined by transmission electron microscopy.The other part of the abdominal aorta sample was used to determine the mRNA levels of matrix metalloproteinase(MMP)-1,MMP-2,MMP-9,tissue inhibitor of metalloproteinases-1(TIMP-1),and Col-1 by quantitative real-time polymerase chain reaction. Results Compared with that in control group,the content of collagen fiber in groups OW and SD+OW had no significant change(all P>0.05);the content of elastic fiber in groups OW and SD+OW decreased(all P<0.001) and had no significant difference between each other(P>0.05).The vascular vessel wall of group OW showed slight fiber breakage,while that of group SD+OW presented wormhole-like or spongy fiber fragmentation.The mRNA levels of MMP-1 and MMP-2 in groups OW and SD+OW had no significant difference between each other(P>0.05) but were higher than that in control group(all P<0.001).The mRNA levels of MMP-9 and TIMP-1 had no significant difference among the three groups(all P>0.05).Groups OW and SD+OW had lower mRNA level(all P<0.001) and protein level(all P<0.001) of Col-1 than control group,while the mRNA and protein levels of Col-1 had no significant difference between groups OW and SD+OW(P>0.05). Conclusion OW can reduce the content of Col-1 and elastic fibers in the extracellular matrix of arterial vessels,destroy the elastic lamina of vascular wall,up-regulate the expression of MMP-1 and MMP-2,thereby injuring arterial vessels.


Subject(s)
Animals , Rats , Collagen Type I , Extracellular Matrix/metabolism , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , RNA, Messenger/genetics , Rats, Sprague-Dawley , Tissue Inhibitor of Metalloproteinase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL